Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 18(1): 162, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34281564

RESUMO

BACKGROUND: Colony-stimulating factor 1 (CSF1) expression in the central nervous system (CNS) increases in response to a variety of stimuli, and CSF1 is overexpressed in many CNS diseases. In young adult mice, we previously showed that CSF1 overexpression in the CNS caused the proliferation of IBA1+ microglia without promoting the expression of M2 polarization markers. METHODS: Immunohistochemical and molecular analyses were performed to further examine the impact of CSF1 overexpression on glia in both young and aged mice. RESULTS: As CSF1 overexpressing mice age, IBA1+ cell numbers are constrained by a decline in proliferation rate. Compared to controls, there were no differences in expression of the M2 markers ARG1 and MRC1 (CD206) in CSF1 overexpressing mice of any age, indicating that even prolonged exposure to increased CSF1 does not impact M2 polarization status in vivo. Moreover, RNA-sequencing confirmed the lack of increased expression of markers of M2 polarization in microglia exposed to CSF1 overexpression but did reveal changes in expression of other immune-related genes. Although treatment with inhibitors of the CSF1 receptor, CSF1R, has been shown to impact other glia, no increased expression of oligodendrocyte lineage or astrocyte markers was observed in CSF1 overexpressing mice. CONCLUSIONS: Our study indicates that microglia are the primary glial lineage impacted by CSF1 overexpression in the CNS and that microglia ultimately adapt to the presence of the CSF1 mitogenic signal.


Assuntos
Linhagem da Célula , Fator Estimulador de Colônias de Macrófagos/metabolismo , Neuroglia/metabolismo , Animais , Arginase/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Gliose , Imuno-Histoquímica , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Neuroglia/citologia , Receptores Imunológicos/metabolismo , Análise de Sequência de RNA , Transdução de Sinais
2.
Mol Biol Cell ; 32(17): 1545-1556, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34191538

RESUMO

Neutrophils migrate in response to chemoattractants to mediate host defense. Chemoattractants drive rapid intracellular cytoskeletal rearrangements including the radiation of microtubules from the microtubule-organizing center (MTOC) toward the rear of polarized neutrophils. Microtubules regulate neutrophil polarity and motility, but little is known about the specific role of MTOCs. To characterize the role of MTOCs on neutrophil motility, we depleted centrioles in a well-established neutrophil-like cell line. Surprisingly, both chemical and genetic centriole depletion increased neutrophil speed and chemotactic motility, suggesting an inhibitory role for centrioles during directed migration. We also found that depletion of both centrioles and GM130-mediated Golgi microtubule nucleation did not impair neutrophil directed migration. Taken together, our findings demonstrate an inhibitory role for centrioles and a resilient MTOC system in motile human neutrophil-like cells.


Assuntos
Centríolos/metabolismo , Microtúbulos/metabolismo , Neutrófilos/metabolismo , Animais , Linhagem Celular , Movimento Celular , Citoesqueleto/fisiologia , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Centro Organizador dos Microtúbulos/fisiologia , Microtúbulos/fisiologia
3.
Trends Cell Biol ; 31(2): 86-94, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33281034

RESUMO

The directed migration of leukocytes to sites of damage or infection is necessary for a productive immune response. There is substantial evidence supporting a key role for chemoattractants in directed migration, however, less is known about how cell-cell contacts affect the migratory behavior of leukocytes in innate immunity. Here, we explore how cell-cell contacts can affect the directed migration of innate immune cells, including their role in attracting, repelling, or stopping cell motility. Further investigation of cell contact dynamics as guidance cues may yield new insights into the regulation of innate immunity.


Assuntos
Comunicação Celular , Movimento Celular/fisiologia , Imunidade Inata , Neutrófilos/fisiologia , Animais , Humanos , Neutrófilos/metabolismo , Transdução de Sinais/fisiologia
4.
Toxins (Basel) ; 12(5)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32438602

RESUMO

The possible relationship between periodontal disease resulting from the infection of gingival tissue by the Gram-negative bacterium Porphyromonas gingivalis (P. gingivalis) and the development of neuroinflammation remains under investigation. Recently, P. gingivalis lipopolysaccharide (LPS) was reported in the human brain, thus suggesting it might activate brain microglia, a cell type participating in neuroinflammation. We tested the hypothesis of whether in vitro exposure to ultrapure P. gingivalis LPS may result in classical and alternative activation phenotypes of rat microglia, with the concomitant release of cytokines and chemokines, as well as superoxide anion (O2-), thromboxane B2 (TXB2), and matrix metalloprotease-9 (MMP-9). After an 18-h exposure of microglia to P. gingivalis LPS, the concentration-dependent responses were the following: 0.1-100 ng/mL P. gingivalis LPS increased O2- generation, with reduced inflammatory mediator generation; 1000-10,000 ng/mL P. gingivalis LPS generated MMP-9, macrophage inflammatory protein 1α (MIP-1α/CCL3), macrophage inflammatory protein-2 (MIP-2/CXCL2) release and significant O2- generation; 100,000 ng/mL P. gingivalis LPS sustained O2- production, maintained MMP-9, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) release, and triggered elevated levels of MIP-1α/CCL3, MIP-2/CXCL2, and cytokine-induced neutrophil chemoattractant 1 (CINC-1/CXCL-1), with a very low release of lactic dehydrogenase (LDH). Although P. gingivalis LPS was less potent than Escherichia coli (E. coli) LPS in stimulating TXB2, MMP-9, IL-6 and interleukin 10 (IL-10) generation, we observed that it appeared more efficacious in enhancing the release of O2-, TNF-α, MIP-1α/CCL3, MIP-2/CXCL2 and CINC-1/CXCL-1. Our results provide support to our research hypothesis because an 18-h in vitro stimulation with ultrapure P. gingivalis LPS resulted in the classical and alternative activation of rat brain microglia and the concomitant release of cytokines and chemokines.


Assuntos
Lipopolissacarídeos/farmacologia , Microglia/efeitos dos fármacos , Porphyromonas gingivalis/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/isolamento & purificação , Metaloproteinase 9 da Matriz/metabolismo , Microglia/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Ratos , Superóxidos/metabolismo , Tromboxano B2/metabolismo
5.
Stem Cell Reports ; 13(6): 1099-1110, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31708474

RESUMO

Human induced pluripotent stem cells (hiPSCs) can serve as a versatile and scalable source of neutrophils for biomedical research and transfusion therapies. Here we describe a rapid efficient serum- and xenogen-free protocol for neutrophil generation, which is based on direct hematoendothelial programming of hiPSCs using ETV2-modified mRNA. Culture of ETV2-induced hematoendothelial progenitors in the presence of GM-CSF, FGF2, and UM171 led to continuous production of generous amounts of CD34+CD33+ myeloid progenitors which could be harvested every 8-10 days for up to 30 days of culture. Subsequently, myeloid progenitors were differentiated into neutrophils in the presence of G-CSF and the retinoic acid agonist Am580. Neutrophils obtained in these conditions displayed a typical somatic neutrophil morphology, produced reactive oxygen species, formed neutrophil extracellular traps and possessed phagocytic and chemotactic activities. Overall, this technology offers an opportunity to generate a significant number of neutrophils as soon as 14 days after initiation of differentiation.


Assuntos
Diferenciação Celular/genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , RNA Mensageiro , Fatores de Transcrição/genética , Biomarcadores , Células Cultivadas , Armadilhas Extracelulares/genética , Armadilhas Extracelulares/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hematopoese , Humanos , Imunofenotipagem , Leucopoese/genética , Células Progenitoras Mieloides/citologia , Células Progenitoras Mieloides/metabolismo , Neutrófilos/citologia
6.
Toxins (Basel) ; 10(4)2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29561785

RESUMO

Cosmopolitan Gram-negative cyanobacteria may affect human and animal health by contaminating terrestrial, marine and freshwater environments with toxins, such as lipopolysaccharide (LPS). The cyanobacterial genus Scytonema (S) produces several toxins, but to our knowledge the bioactivity of genus Scytonema LPS has not been investigated. We recently reported that cyanobacterium Oscillatoria sp. LPS elicited classical and alternative activation of rat microglia in vitro. Thus, we hypothesized that treatment of brain microglia in vitro with either cyanobacteria S. javanicum or S. ocellatum LPS might stimulate classical and alternative activation with concomitant release of superoxide anion (O2-), matrix metalloproteinase-9 (MMP-9), cytokines and chemokines. Microglia were isolated from neonatal rats and treated in vitro with either S. javanicum LPS, S. ocellatum LPS, or E. coli LPS (positive control), in a concentration-dependent manner, for 18 h at 35.9 °C. We observed that treatment of microglia with either E. coli LPS, S. javanicum or S. ocellatum LPS generated statistically significant and concentration-dependent O2-, MMP-9 and pro-inflammatory cytokines IL-6 and TNF-α, pro-inflammatory chemokines MIP-2/CXCL-2, CINC-1/CXCL-1 and MIP-1α/CCL3, and the anti-inflammatory cytokine IL-10. Thus, our results provide experimental support for our working hypothesis because both S. javanicum and S. ocellatum LPS elicited classical and alternative activation of microglia and concomitant release of O2-, MMP-9, cytokines and chemokines in a concentration-dependent manner in vitro. To our knowledge this is the first report on the toxicity of cyanobacteria S. javanicum and S. ocellatum LPS to microglia, an immune cell type involved in neuroinflammation and neurotoxicity in the central nervous system.


Assuntos
Cianobactérias , Lipopolissacarídeos/toxicidade , Microglia/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Citocinas/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Microglia/metabolismo , Ratos Sprague-Dawley , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...